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Vector k"p approach for photonic band structures

J. E. Sipe
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 24 January 2000!

We point out thatk•p treatments of photonic band gap materials based on the usual master equation must
employ not only the physical photonic band solutions of that equation, but also unphysical solutions, in order
to form a complete set. Nonetheless, it is possible to construct correctk•p expressions for the group velocity
and its dispersion in terms of matrix elements involving only the photonic band solutions.

PACS number~s!: 42.70.Qs, 78.20.2e, 42.25.2p
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I. INTRODUCTION

The usefulness of thek•p formalism in describing the
motion of electrons in semiconductors has led to its ext
sion to treat light in photonic band gap materials@1–3#. Yet
a new subtlety arises in this application in which vec
fields are involved. It appears not to have been gener
realized, but can easily be described.

For a material with a periodic dielectric constante(r )
5e(r1R), whereR is any lattice vector, the photonic ban
structure is often calculated@4# by finding the eigenvaluesl
and vector eigenfunctionsH(r ) that solve the so-called
‘‘master equation,’’

QH~r !5lH~r !, ~1!

where the vector operator

Q[“3S 1

n2~r !
¹3 D

is Hermitian; we have pute(r )5e0n2(r ), and neglected any
magnetic effects. According to Bloch’s theorem, solutions
Eq. ~1! can be found of the form Hmk(r )
5N21/2hmk(r )exp(ik•r ), with hmk(r )5hmk(r1R), whereN
is the number of unit cells in the normalization volume; he
m labels the band, andk is the crystal wave vector. Thos
solutions with nonzero eigenvaluel5lmk are guaranteed to
be divergenceless,“•Hmk(r )50, and can be identified a
the magnetic field amplitude of stationary solutions of t
Maxwell equations at frequencyvmk56cAlmk. The asso-
ciated electric field follows immediately from the Maxwe
equationeĖ5“3H. We refer to these fields and their fre
quencies as thephotonic bands.

Proceeding in analogy with the electron problem, fro
Eq. ~1! an eigenvalue equation forhmk(r ) is derived,

Hkhmk~r !5lmkhmk~r !, ~2!

whereHk5Q1uk , and the Hermitian operatoruk acts on a
vector functiong(r ) according to

ukg~r ![“3S ik3g~r !

n2~r !
D 1

ik3@“3g~r !1 ik3g~r !#

n2~r !
. ~3!
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Thek•p formalism involves writing Eq.~2! at k1k as well,
putting Hk1k5Hk1Vk,k , whereVk,k5uk¿k2uk , and writ-
ing an eigenfunctionhm(k1k)(r ) of the ‘‘perturbed’’Hk¿k in
terms of all of the eigenfunctionshpk(r ) of the ‘‘unper-
turbed’’ Hk .

If we restrict ourselves to photonic bands, one can see
this strategy fails, even ifk is an arbitrarily small wave vec
tor. In that limit we would write

hm(k1k)~r !5hmk~r !1(
p,a

gpa
(1)kahpk~r !1O~k2!, ~4!

where thegpa
(1) are first order expansion coefficients and thea

are Cartesian components. The difficulty is that, since b
Hm(k¿k)(r ) andHmk(r ) are divergenceless we must have

“•hm(k1k)~r !1 i ~k1k!•hm(k1k)~r !50, ~5!

and the corresponding equation withk¿k replaced every-
where byk. Taking the divergence of Eq.~4! and using these
conditions, we find

i k•hmk~r !1O~k2!50. ~6!

But for this to hold for anyk it must be true thathmk(r )
50, which is nonsense. So an expansion of the form~4!
cannot be possible.

In the next section we identify the source of this difficul
and correct it, and in Sec. III we develop thek•p expansion.
In Sec. IV we compare our results with earlier work a
discuss the consequences. Some of the details are pres
in an Appendix.

II. THE BASIS SET

The difficulty highlighted above arises because the fie
hpk(r ) associated with photonic bands do not constitute
complete set of functions periodic over the unit cell. To e
tablish such a set it is easiest to return to the master equa
~1! and consider not only the physical solutions, butall the
solutions. These may be taken as a complete set, from w
a corresponding complete set of eigenfunctions ofHk can
then be extracted.

We begin by considering three types of solutions of E
~1!. Besides satisfying Eq.~1!, type t1 also satisfy“•H(r )
50 and havelÞ0, type t2 satisfy “•H(r )50 and have
l50, and typest3 satisfy“3H(r )50 and havel50. Uni-
5672 ©2000 The American Physical Society
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form solutions satisfy the conditions for both typest2 and
t3; for definiteness we include them in typet3. All three
types are also required to satisfy periodic boundary con
tions over a normalization volume.

Our categorization clearly exhausts the solutions with
ther“•H(r )50 or “3H(r )50, as can be seen by inspec
ing Eq. ~1! and its divergence. If both¹•H(r )50 and
“3H(r )50, the only solution consistent with periodi
boundary conditions over a normalization volume is the u
form solution, which is included in typet3. More general
solutions HG(r ) of Eq. ~1!, with “•HG(r )Þ0 and
“3HG(r )Þ0, can always be written as the sum of a tran
verse field and a longitudinal field,HG(r )5HGT(r )
1HGL(r ), where“•HGT(r )50 and“3HGL(r )50; we in-
clude a possible uniform component in the longitudinal fie
HGL(r ) for definiteness. Such solutionsHG(r ) must havel
50, as can be seen by taking the divergence of Eq.~1!. But
then since bothHG(r ) and HGL(r ) are solutions of Eq.~1!
with eigenvalue zero,HGT(r ) must be also. Thus such a
HG(r ) is the sum of a typet2 and a typet3 solution. Hence
a complete set of typest1 , t2, andt3 suffices to identify a
basis set of eigenfunctions of Eq.~1!. We now examine their
nature.

Type t1 solutions identify the photonic bands, and corr
spond to the magnetic fields of stationary solutions of M
well equations with nonzero frequencyvmk , lmk5vmk

2 /c2.
Type t2 solutions, if they exist, are unphysical, in th

sense that a solutionH(r ) of type t2 cannot be identified
with the magnetic field of a stationary solution of the Ma
well equations. For suppose that it could, with frequencyv
50. Then from the Maxwell equations we must ha
“3H(r)50, and both the divergence and curl ofH(r )
would vanish. But there is no nontrivial solution of the Ma
well equations, periodic over a normalization volume, sa
fying this condition other than a uniform solution, which b
our convention is considered to be typet3. Suppose then tha
a solutionH(r ) of type t2 could be identified with the mag
netic field of a stationary solution of the Maxwell equatio
with a frequencyvÞ0 . From the Maxwell equations on
can then immediately derive that such anH(r ) should satisfy
Eq. ~1! with l5v2/c2, contradicting our assumption that
is of typet2.

Type t3 are longitudinal fields, and we can easily co
struct a full set of such solutions. Puttingy(V)[V/uVu for
any nonvanishing vectorV, we construct a set of typet3
solutions according to

HmLk~r ![
y~k1Gm!ei (k¿Gm)•r

AV
5

hmLk~r !eik•r

AN
,

where

hmLk~r ![
y~k1Gm!eiGm•r

AVc

; ~7!

hereV is the normalization volume,Vc is the volume of a
unit cell, and theGm label the reciprocal lattice vectors
Clearly hmLk(r )5hmLk(r1R). As k ranges over the firs
Brillouin zone and theGm vary over all the reciprocal lattice
vectors,k1Gm ranges over all of reciprocal space. By co
i-

i-

i-

-

-
-

-

struction the fieldsHmLk(r … are all longitudinal, and they
form a basis for describing any longitudinal field. Unifor
solutions, characterized byk5Gm50, are a special case. A
uniform field is both longitudinal and transverse, and inste
of one functionhmL0(r ) we have three, which we can take a
h(x)L0(r )5 x̂/AVc, h(y)L0(r )5 ŷ/AVc, and h(z)L0(r )
5 ẑ/AVc. In sums and relations involvingHmLk(r ) we un-
derstand there to be these three terms in the special cak
5Gm50. Except for these uniform solutions, typet3 solu-
tions have“•HmLk(r )Þ0, and hence they are unphysical
that they do not correspond to the magnetic field of a
stationary solution of the Maxwell equations. We label t
eigenvalues of typet3 solutions, which all vanish, aslmLk
50.

To simplify the notation, we combine typet1 and
any type t2 solutions in the notation HmTk(r )
5N21/2hmTk(r … exp(ik•r ), since they are both transverse; w
denote their eigenvalues bylmTk . For the physical typet1

solutions these eigenvalues arevmk
2 /c2; for typet2 solutions

the eigenvalues are zero. We will, however, continue to
Hmk(r ) and hmk(r ) when we want to refer specifically to
typet1 solution. With a choice of overall normalization fac
tors in the eigenfunctions, it is easy to see that

E HpSk* ~r !•Hp8S8k8~r !dr5dpp8dSS8dkk8 , ~8!

whereSandS8 can be eitherT or L: The photonic band type
t1 solutions are orthogonal among themselves, with a pro
choice of any degenerate states at a givenk, and any typet2
solutions can be similarly chosen to be orthogonal amo
themselves; typet3 are orthogonal among themselves b
cause two wave vectors (k1Gp ,k81Gp8) in the allowed set
cannot be equal unlessk5k8 and Gp5Gp8 ; type t2 and
typet3 solutions are orthogonal to typet1 solutions because
of different eigenvalues; typet2 solutions are orthogonal to
type t3 solutions because of the orthogonality of transve
and longitudinal functions. For a givenk, it then follows
from the definition of thehpSk(r ) and Eq.~8! that

E
unit

hpSk* ~r !•hp8S8k~r !dr5dpp8dSS8 , ~9!

where the integration ranges over a unit cell. All the fun
tions hpSk(r ) satisfy

HkhpSk~r !5lpSkhpSk~r !. ~10!

III. k"p THEORY

By identifying all the eigenfunctions of the Hermitian op
erator Q, whether they correspond to physical magne
fields or not, we have been led to a set of functionshpSk(r )
that can thus be taken as a complete set of functions peri
over the unit cell. When this larger set, instead of just
hpk(r ) corresponding to the photonic bands, is used to
pandhm(k1k…(r ) we expect that the correct divergence co
dition ~5! should indeed be satisfied. We confirm this in t
Appendix. In this section we find the expressions f
]vmk /]ka and]2vmk /]ka]kb for a photonic bandm that is
nondegenerate atk; the extension to degenerate points fo
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5674 PRE 62J. E. SIPE
lows in the usual way. The expression for]2vmk /]ka]kb

leads to a kind of effective mass sum rule that initially i
volves matrix elements connecting the photonic band s
hmk(r ) to all functionshpSk(r ), but it can be reduced to on
involving only matrix elements between photonic ba
states.

We begin with Eq.~10!, which we write in shorthand as

~Hk2lsk!hsk , ~11!

using a single Greek subscript to denote (pS) where conve-
nient. We take all the states atk to be normalized,

^hskuhs8k&5dss8 ,

where in general

^aub&[E
unit

a* ~r !•b~r !dr .

Now at k we choose a typet1 band that is nondegenerat
we denote the particular state byhmk . We now imagine al-
lowing k to move to neighboring pointsk1k in the Brillouin
zone, in the course of whichhmk evolves; we forego normal
ization atkÞ0 by insisting thathm(k1k)2hmk is orthogonal
to hmk . Hence

K hmkU]hmk

]ka L 50,

K hmkU ]2hmk

]ka]kbL 50, ~12!

etc., where the superscript onka indicates a Cartesian com
ponent. Normalization could always be imposed at the en
the calculation if desired. Taking the derivative of Eq.~11!
yields

S ]Hk

]ka
2

]lmk

]ka D hmk1~Hk2lmk!
]hmk

]ka
50. ~13!

Dotting into hmk* and integrating over a unit cell, and usin
Eq. ~11!, we find

]lmk

]ka
5K hmkU]Hk

]ka
hmkL . ~14!

Sincelmk5vmk
2 /c2, this immediately yields

]vmk

]ka
5

c2

2vmk
K hmkU]Hk

]ka
hmkL , ~15!

an expression for the group velocity associated with banm
at pointk in the Brillouin zone.

Next, dotting Eq.~13! into hsk* , for s not equal to our
state of interest, and integrating over a unit cell, gives

K hskU]hmk

]ka L 52
^hsku~]Hk /]ka!hmk&

~lsk2lmk!
. ~16!
te

of

Proceeding, we take]/]kb of Eq. ~13! and, dotting the result
into hmk* and integrating over a unit cell, using Eq.~12! and
the expansion

]hmk

]ka
5( 8

s
hskK hskU]hmk

]ka L
52( 8

s
hsk

^hsku~]Hk /]ka!hmk&
~lsk2lmk!

, ~17!

where the prime indicates thats is not to be equal to our
state of interest, we find that

]2lmk

]ka]kb
5K hmkU ]2Hk

]ka]kb
hmkL

2( 8
s

^hmku~]Hk /]ka!hsk&^hsku~]Hk /]kb!hmk&
~lsk2lmk!

2( 8
s

^hmku~]Hk /]kb!hsk&^hsku~]Hk /]ka!hmk&
~lsk2lmk!

.

~18!

We can write this as the sum of two terms,

]2lmk

]ka]kb
5S ]2lmk

]ka]kbD
pb

1S ]2lmk

]ka]kbD
0

,

where the term labeled with the subscriptpb contains the
first term in Eq.~18! and the terms in the summations invol
ing photonic bands~type t1 solutions!; the second term in-
volves terms in the summations in Eq.~18! involving typet2
and typet3 solutions~with eigenvaluelsk50). Then using
lmk5vmk

2 /c2, we write

]2vmk

]ka]kb
5S ]2vmk

]ka]kbD
pb

1S ]2vmk

]ka]kbD
0

, ~19!

where

S ]2vmk

]ka]kbD
pb

[
c2

2vmk
S ]2lmk

]ka]kbD
pb

2
1

vmk

]vmk

]ka

]vmk

]kb

and

S ]2vmk

]ka]kbD
0

[
c2

2vmk
S ]2lmk

]ka]kbD
0

.

We include the group velocity terms in the photonic ba
(pb) component of the group velocity dispersion because
group velocity~15! involves only the photonic band of inter
est. From the expressions above we find
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S ]2vmk

]ka]kbD
pb

5
c2

2vmk
K hmkU ]2Hk

]ka]kb
hmkL 2

c4

2vmk
( 8

p

^hmku~]Hk /]ka!hpk&^hpku~]Hk /]kb!hmk&

~vpk
2 2vmk

2 !

2
c4

2vmk
( 8

p

^hmku~]Hk /]kb!hpk&^hpku~]Hk /]ka!hmk&

~vpk
2 2vmk

2 !
2

c4

4vmk
3 K hmkU]Hk

]ka
hmkL K hmkU]Hk

]kb
hmkL , ~20!
ur
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where the sum overp is over photonic bands other than o
band of interest, and

S ]2vmk

]ka]kbD
0

5
c4

2vmk
3 (

s¹t1
K hmkU]Hk

]ka
hskL K hskU]Hk

]kb
hmkL

1
c4

2vmk
3 (

s¹t1
K hmkU]Hk

]kb
hskL KhskU]Hk

]ka
hmkL .

~21!

The sum overs in Eq. ~21! ranges over only the typet2
and typet3 solutions for whichlsk50. Yet it is possible to
write this contribution to]2vmk /]ka]kb in terms of the ma-
trix elements involving only the photonic bands~type t1 so-
lutions!, because the sum over typet2 and t3 solutions in
Eq. ~21! appears only in the form

(
s¹t1

uhsk&^hsku. ~22!

Using the resolution of unityI in the usual obvious sche
matic notation,

I5uhmk&^hmku1 ( 8
sPt1

uhsk&^hsku1 (
s¹t1

uhsk&^hsku,

to solve for the sum~22!, we can then write Eq.~21! as

S ]2vmk

]ka]kbD
0

5
c4

2vmk
3 K hmkUS ]Hk

]ka

]Hk

]kb
1

]Hk

]kb

]Hk

]ka D hmkL
2

c4

vmk
3 K hmkU]Hk

]ka
hmkL K hmkU]Hk

]kb
hmkL

2
c4

2vmk
3 ( 8

p K hmkU]Hk

]ka
hpkL

3K hpkU]Hk

]kb
hmkL

2
c4

2vmk
3 ( 8

p K hmkU]Hk

]kb
hpkL

3K hpkU]Hk

]ka
hmkL . ~23!

Equation~15! for the group velocity and Eq.~19! for the
group velocity dispersion are the main results of this sect
 n.

The first contribution to Eq.~19!, that of Eq.~20!, is directly
associated with the photonic bands. The other contribut
Eq. ~21!, is associated with solutions of typet2 and t3,
which are unphysical except in the case of a uniform solut
H. But since typet2 andt3 solutions of Eq.~1! all have the
same eigenvalue of zero, in the end that contribution can
written in terms of matrix elements involving photonic ban
as well @Eq. ~23!#.

IV. DISCUSSION

Applications of thek•p theory in electron physics begin
depending on the problem at hand, with eigenstates of
Schrödinger, Pauli, or Dirac Hamiltonian. Since the corr
sponding time-dependent equation is the fundamental e
tion of the theory being employed, the eigenstates of
Hamiltonian are therefore all physical solutions. Hence,
expanding the periodic part of a Bloch function atk1k in
terms of those atk it naturally suffices to consider the phys
cal solutions, since they exhaust the mathematical ones.

The situation is qualitatively different in the study of ph
tonic band gap materials. There the eigenfunctions of inte
are those of the master equation~1!, but the Hamiltonian-like
operatorQ of that equation isnot directly associated with the
fundamental theory at hand. Rather, it is the Maxwell eq
tions that define the fundamental theory. And there are m
solutions of the master equation, with eigenvaluel50, that
do notcorrespond to the physical solutions, i.e., solutions
the Maxwell equations. Hence the physical solutions of
master equation—the photonic bands—do not exhaust
mathematical solutions.

Now both a photonic band function atk, Hmk(r ) , and a
neighboring one atk1k, Hm(k1k)(r ), are physical solutions
and are therefore transverse vector fields. But in general
ther of the periodic partshmk(r ) and hm(k1k)(r ) are trans-
verse, and indeed they differ from transversality by differe
amounts@see Eq.~5!#. The result is thathm(k1k)(r ) cannot be
expanded in terms of periodic functionshpk(r ) correspond-
ing only to physical solutions; the periodic parts of unphy
cal solutions atk must be employed as well.

To our knowledge this has not been pointed out in
literature. Yet if the sums appearing in previous calculatio
~see, e.g., Johnsonet al. @3#!, essentially corresponding t
those appearing in Eq.~18!, are taken to range overall the
hsk(r ), both the physicalandunphysical solutions, those re
sults are correct. That is, if one works with thefull set of
eigenfunctions of the master equation, including the unph
cal solutions with“•H(r )Þ0, one will not go astray. Of
course in practical applications, where it suffices to appro
mate the sums by contributions from only a few neighbor
bands, the neglect of the unphysical solutions at zero
quency should lead to no significant error; both the unphy
cal solutions and the physical ‘‘remote bands’’ have a n
ligible effect on]2vmk /]ka]kb.
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Nonetheless, since in formal developments it can be c
cially important to include all terms in a sum rule@5#, the
appearance of these unphysical solutions in the expres
for ]2vmk /]ka]kb @the contribution (]2vmk /]ka]kb)0 of
Eq. ~21!# is worthy of note. Further, we have shown tha
using closure, it is in fact possible to write the contributi
of these unphysical solutions to]2vmk /]ka]kb in terms of
matrix elements involving only physical solutions@Eq. ~23!#,
hence in the end producing a correct sum rule~i.e., a correct
expression for]2vmk /]ka]kb) involving only the photonic
bands. We stress that if the sums in previous expressions
]2vmk /]ka]kb in the literature@3# are taken to involveonly
the photonic bands, they are incorrect.

Finally, we note that it is straightforward to work out th
expression for]Hk /]ka @5]uk /]ka; see Eqs.~2! and ~3!#
and hence the matrix elements involve in the express
~15! and ~19! for the group velocity and the group velocit
dispersion. Yet the complicated form of Eqs.~20! and ~23!
suggests that there may be a route, different from that ba
on the master equation~1!, which might lead to a simple
expression for terms such as]2vmk /]ka]kb. We plan to ad-
dress this issue in a future publication.
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APPENDIX

In this Appendix we confirm that, if we use our full bas
set and perform ak•p expansion to move fromk to k1k,
then we do indeed recover Eq.~5!. We use the fact that this
equation is satisfied at thek at which we begin the expan
sion,

“•hmk~r !1 ik•hmk~r !50, ~A1!

wherehmk corresponds to a typet1 solution of the master
equation~1!. It will suffice to restrict ourselves to smallk;
we use Eq.~17! for ]hmk /]ka to write

hm(k1k)~r !5hmk~r !1ka
]hmk~r !

]ka
1O~k2!

5hmk~r !1ka( 8
s

hsk~r !K hskU]hmk

]ka L
1O~k2!,

where repeated Cartesian components are to be sum
over, or

hm(k1k)~r !5hmk~r !2ka( 8
s

hsk~r !
^hsku~]Hk /]ka!hmk&

~lsk2lmk!

1O~k2!.

Breaking the sum intosPt1 ,t2 ~meanings is either a type
t1 or a typet2 solution! andsPt3, we can write
u-

on

,

r

s

ed

r
al

ed

hm(k1k)~r !5hmk~r !1h̃mTk~r !1h̃mLk~r !1O~k2!,
~A2!

where

h̃mTk~r !52ka ( 8
sPt1 ,t2

hsk~r !
^hsku~]Hk /]ka!hmk&

~lsk2lmk!
,

~A3!

and

h̃mLk~r !52ka (
sPt3

hsk~r !
^hsku~]Hk /]ka!hmk&

~lsk2lmk!

5ka (
sPt3

hsk~r !
^hsku~]Hk /]ka!hmTk&

lmk
. ~A4!

Now using Eq.~A2! we have

“•hm(k1k)~r !5“•hmk~r !1“•h̃mTk~r !1“•h̃mLk~r !

1O~k2!,

while

i ~k1k!•hm(k1k)~r !5 i ~k1k!•hmk~r !1 ik•h̃mTk~r !

1 ik•h̃mLk~r !1O~k2!,

where we have used the fact thath̃m(T,L)k(r ) are already first
order ink. Then, using Eq.~A1!, which holds for functions
of both typest1 andt2, we find that for Eq.~5! to be satis-
fied we require

i k•hmk~r !1“•h̃mLk~r !1 ik•h̃mLk~r !50 ~A5!

@cf. Eq. ~6!#.
Now in the special case thatk50 there will be three

functionshsk(r ) in the sum in Eq.~A4! for which Gm50.
But these functions are uniform, so their divergence
clearly zero. Thus, to satisfy Eq.~A5! it is sufficient to re-
quire

i k•hmk~r !1“•h̄mLk~r !1 ik•h̄mLk~r !50,

where

h̄mkL~r !5ka (
sP t̄3

hsk~r !
^hsku~]Hk /]ka!hmTk&

lmTk
, ~A6!

where the overbar ont̄3 indicates that all terms of typet3
are to be included ifkÞ0, while only theGmÞ0 terms are to
be included ifk50. To proceed we need to work out th
expression~A6! for h̄mLk(r ). The overlap integral involved is
complicated to work out directly, but a simple expression
it can be derived using the fact that

^hskuHkhmk&50

for sP t̄3, since thehsk(r ) are eigenfunctions of the Hermit
ian operatorHk with eigenvalue zero. Hence
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]

]ka
^hskuHkhmTk&5K ]hsk

]ka UHkhmkL 1K hskU]Hk

]ka
hmkL

1K hskUHk

]hmk

]ka L 50.

Now the last of the three terms here is itself zero, again si
the hsk(r ) of interest are eigenfunctions ofHk with eigen-
value zero. Thus we find

K hskU]Hk

]ka
hmkL 52K ]hsk

]ka UHkhmkL 52lmkK ]hsk

]ka UhmkL ,

and the expression~A6! becomes

h̄mLk~r !52ka (
sP t̄3

hsk~r !K ]hsk

]ka UhmkL . ~A7!

To evaluate this expression we need]hsk* (r )/]ka.
Consider first the case wherekÞ0. We recall the expres

sion ~7! for a generalhnLk(r ) and, sincey(k1Gn)5(k
1Gn)/uk1Gnu, we find immediately

]y~k1Gn!

]ka
5

â

uk1Gnu
2

@ â•~k1Gn!#y~k1Gn!

uk1Gnu2
.

Thus fors5(nL) we have

ka
]hnLk* ~r !

]ka
5

1

AVc
S k

uk1Gnu

2
@k"~k1Gn!#y~k1Gn!

uk1Gnu2
D e2 iGn•r.

Next, using the Fourier expansion of the periodic functi
hmk(r ),

hmk~r !5
1

AVc
(

p
hmk

p eiGp•r,

we find

kaK ]hnLk

]ka UhmkL 5
k"hmk

n

uk1Gnu
2

@k"~k1Gn!#y~k1Gn!"hmk
n

uk1Gnu2

5
k"hmk

n

uk1Gnu
,

r

m

n

e

where in the last line we have used the fact that, sin
Hmk(r ) is transverse, the componentshmk

n must be perpen-
dicular tok1Gn . Hence Eq.~A7! yields

h̄mLk~r !52(
n

hnLk~r !
k"hmk

n

uk1Gnu

52
1

AVc
(

n
y~k1Gn!

k"hmk
n

uk1Gnu
eiGn•r, ~A8!

and finally

“•h̄mLk~r !1 ik•h̄mLk~r !

52
1

AVc
(

n
i ~k1Gn!•y~k1Gn!

k"hmk
n

uk1Gnu
eiGn•r

52
i

AVc
(

n
k"hmk

n eiGn•r

52 i k"hmk~r !, ~A9!

so we find that Eq.~A5! is indeed satisfied.
In the case thatk50, the reduction proceeds in the sam

way except that, instead of Eq.~A8!, we find

h̄mL0~r !52 (
n,GnÞ0

hnL0~r !
k"hm0

n

uGnu
,

so instead of Eq.~A9! we find

“•h̄mL0~r !52
1

AVc
(

n,GnÞ0
iGn•y~Gn!

k"hm0
n

uGnu
eiGn•r

52
i

AVc
(

n,GnÞ0
k"hm0

n eiGn•r.

But anyHm0(r ) of type t1must be orthogonal toH(x)L0(r ),
H(y)L0(r ), andH(z)L0(r ), since the latter three functions hav
eigenvalue zero, so it must be thathm0

n 50 for Gn50. Hence
we can write

“•h̄mL0~r !52
i

AVc
(

n
k"hm0

n eiGn•r52 i k"hm0~r !,

and again we satisfy Eq.~A5!.
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