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Vector k-p approach for photonic band structures
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We point out thak- p treatments of photonic band gap materials based on the usual master equation must
employ not only the physical photonic band solutions of that equation, but also unphysical solutions, in order
to form a complete set. Nonetheless, it is possible to construct cdrrpatxpressions for the group velocity
and its dispersion in terms of matrix elements involving only the photonic band solutions.

PACS numbdis): 42.70.Qs, 78.20-e, 42.25:-p

[. INTRODUCTION Thek- p formalism involves writing Eq(2) atk+ « as well,
putting Hy 4 .= Hy+ Vi e, WhereVy .= 0y~ 6y, and writ-

The usefulness of th&-p formalism in describing the ing an eigenfunctiom (r) of the “perturbed” H, . in
motion of electrons in semiconductors has led to its extenterms of all of the eigenfunctionb,(r) of the “unper-
sion to treat light in photonic band gap materigls-3]. Yet  turbed” H,.

a new subtlety arises in this application in which vector If we restrict ourselves to photonic bands, one can see that
fields are involved. It appears not to have been generallyhis strategy fails, even ik is an arbitrarily small wave vec-

realized, but can easily be described. tor. In that limit we would write
For a material with a periodic dielectric constaeftr)
=e(r+R), whereR is any lattice vector, the photonic band h _ 1) a 2
. S X r=hm(r)+ hy, (r)+ , (4
structure is often calculatdd] by finding the eigenvalues m(k-+ (1) =N (1) % Ypa KN (1) +O(k%),  (4)

and vector eigenfunction$i(r) that solve the so-called
“master equation,” where theyé? are first order expansion coefficients and ¢éhe

are Cartesian components. The difficulty is that, since both
OH(r)=\H(r), (1)  Hmk+r(r) andHp(r) are divergenceless we must have

where the vector operator Vi (D 1 (K+5) - iy 19 (1) =0, (5)

where byk. Taking the divergence of E¢4) and using these

O=VX conditions, we find

and the corresponding equation witht« replaced every-
vl

n?(r)

is Hermitian; we have pué(r)=eon?(r), and neglected any i K- h(1) +O(x?)=0. (6)
magnetic effects. According to Bloch’s theorem, solutions OfBut for this to hold for anyx it must be true thah
Eq. (1) can be found of the form H(r)
=N""hy (r)expik-r), with hy(r) =hg(r+R), whereN  cohot e possible.

is the number of unit cells in the normalization volume; here |, the next section we identify the source of this difficulty
m labels the band, anl is the crystal wave vector. Those 5.4 correct it, and in Sec. lll we develop tkep expansion.
solutions with nonzero eigenvalue= N\, are guaranteed 0 | gec. |V we compare our results with earlier work and

be divergencelessy -Hpy(r)=0, and can be identified as gigcyss the consequences. Some of the details are presented
the magnetic field amplitude of stationary solutions of the;, 4p Appendix.

Maxwell equations at frequenay = = Cy A The asso-
ciated electric field follows immediately from the Maxwell

equationeE=V X H. We refer to these fields and their fre-

mk(r)
=0, which is nonsense. So an expansion of the fddn

Il. THE BASIS SET

quencies as thphotonic bands The difficulty highlighted above arises because the fields
Proceeding in analogy with the electron problem, fromhpk(r) associated with photonic bands do not constitute a
Eq. (1) an eigenvalue equation fdr,(r) is derived, complete set of functions periodic over the unit cell. To es-
tablish such a set it is easiest to return to the master equation
Hihimie(1) = N michimie (1), (2) (1 and consider not only the physical solutions, blitthe

solutions. These may be taken as a complete set, from which
whereH, =0+ 6,, and the Hermitian operatd, actsona & corresponding complete set of eigenfunctionsHgf can

vector functiong(r) according to then be extracted. ,
We begin by considering three types of solutions of Eq.

. . . (1). Besides satisfying Ed1), type 7, also satisfyV - H(r)
akg(r)EVX(lkxg(r)>+ |k><[v><g(r)+|k><g(r)]_ (3 =0 and haven#0, type r, satisfy V-H(r)=0 and have
n(r) n2(r) =0, and types; satisfyV X H(r)=0 and have\=0. Uni-
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form solutions satisfy the conditions for both typesand  struction the fieldsH,,(r) are all longitudinal, and they

73, for definiteness we include them in typg. All three  form a basis for describing any longitudinal field. Uniform

types are also required to satisfy periodic boundary condisolutions, characterized by=G,=0, are a special case. A

tions over a nqrmqllzanon volume. . . _uniform field is both longitudinal and transverse, and instead
Our categorization clearly exhausts the solutions with ei-of one functionh,,, o(r) we have three, which we can take as

therV-H(r)=0or VXH(r)=0, as can be seen by inspect- , N =x//0 h N =v/JQ and h r

ing Eg. (1) and its divergence. If botlV-H(r)=0 and :(XA)"O( ) Vo, Lol ) y \/_ . @uol )_

- : ) . . =7/\/Q. In sums and relations involvingl (r) we un
VxH(r)=0, the only solution consistent with periodic derstand there to be these three terms in the specialkcase
boundary conditions over a normalization volume is the uni—_G — 0. Excenpt for these uniform solutions. t P solu-
form solution, which is included in types;. More general . ~m P » typg solu- -

. : tions haveV - H,,(r)#0, and hence they are unphysical in
solutions Hg(r) of Eq. (1), with V-Hg(r)#0 and -
v . that they do not correspond to the magnetic field of any
XHg(r)#0, can always be written as the sum of a trans-_, _ . : )
stationary solution of the Maxwell equations. We label the

verse field and a longitudinal fieldHg(r)=Hg(r) . ; ) :
4+ Ha(r), whereV - Hg(r)=0 andV X Hg (1) =0: we in- (ﬂ%envalues of type; solutions, which all vanish, as,

clude a possible uniform component in the longitudinal field To simolify the notation. we combine tvoe. and
Hg(r) for definiteness. Such solutiofs(r) must haven piTy ) ! _ypey
—0, as can be seen by taking the divergence of(Eq.But > type 7, solutions in the notation Hpyye(r)

’ ' =N""2h.,(r) exp(k-r), since they are both transverse; we

then since botfH(r) andHg,(r) are solutions of Ea(L) 00 oir eigenvalues by, 1. For the physical type;
with eigenvalue zeroHg(r) must be also. Thus such an : . 2. )
solutions these eigenvalues as§,/c?; for type 7, solutions

Hg(r) is the sum of a type, and a typer; solution. Hence the ei I we will. h i ¢
a complete set of types,, r,, and 5 suffices to identify a e eigenvalues are zero. We will, however, continue to use
Hm(r) andh,(r) when we want to refer specifically to a

basis set of eigenfunctions of . We now examine their : . X o
9 Ed) type 7, solution. With a choice of overall normalization fac-

nature. . ! a CToes
Type 7, solutions identify the photonic bands, and corre-1°'S I the eigenfunctions, it is easy to see that

spond to the magnetic fields of stationary solutions of Max-

well equations with nonzero frequeney, Amc= w2, /c?. f HY (1) -Hprgi (1 dr=6pp 8sg S » (8)
Type 7, solutions, if they exist, are unphysical, in the

sense that a solutiohl(r) of type 7, cannot be identified whereSandS' can be eithef or L: The photonic band type

with the magnetic field of a stationary solution of the Max- 7, solutions are orthogonal among themselves, with a proper

well equations. For suppose that it could, with frequency choice of any degenerate states at a giveand any typer,

=0. Then from the Maxwell equations we must havesplutions can be similarly chosen to be orthogonal among

VXH(r)=0, and both the divergence and curl bf(r)  themselves; typer; are orthogonal among themselves be-

would vanish. But there is no nontrivial solution of the Max- cause two wave vectors ¢ G, .k’ +G,) in the allowed set

well equations, periodic over a normalization volume, satistannot be equal unleds=k’ and Gp,=G,; type 7, and

fying this condition other than a uniform solution, which by type 7, solutions are orthogonal to typg solutions because

our convention is considered to be type Suppose then that of different eigenvalues; type, solutions are orthogonal to

a solutionH(r) of type 7, could be identified with the mag- type r, solutions because of the orthogonality of transverse

netic field of a stationary solution of the Maxwell equations and l|ongitudinal functions. For a givek, it then follows

with a frequencyw+#0 . From the Maxwell equations one from the definition of theh,s(r) and Eq.(8) that

can then immediaztelg derive that suchk(r) should satisfy

Eqg. (1) with A = w“/c?, contradicting our assumption that it

isqof( t3)/pe 5. ’ P funithssk(r) “hprsi()dr=dpp S5 ©
Type 75 are longitudinal fields, and we can easily con-

struct a full set of such solutions. PuttingV)=V/|V| for  where the integration ranges over a unit cell. All the func-

any nonvanishing vectoy, we construct a set of type;  tionshpg(r) satisfy

solutions according to
Hihps(r) =N pschps(r). (10
k+G. el k+tGm 1 ph ek’
Ho (1) = u( m) _ mik(r) ,
\/5 \/ﬁ lll. k-p THEORY

By identifying all the eigenfunctions of the Hermitian op-
erator ®, whether they correspond to physical magnetic
w(k+G,)el T fields or not, we have been led to a set of functibpg(r)
A1) = m ; (7) that can thus be taken as a _complete set (_)f functlons_ periodic
\/Q_C over the unit cell. When this larger set, instead of just the
hpk(r) corresponding to the photonic bands, is used to ex-
here() is the normalization volumet) is the volume of a  pandh (r) we expect that the correct divergence con-
unit cell, and theG,, label the reciprocal lattice vectors. dition (5) should indeed be satisfied. We confirm this in the
Clearly hy(r)=hnh(r+R). As k ranges over the first Appendix. In this section we find the expressions for
Brillouin zone and theS,,, vary over all the reciprocal lattice  dwy /dk?® and #?wy, / 9k39k® for a photonic bandn that is
vectors,k+ G, ranges over all of reciprocal space. By con- nondegenerate &; the extension to degenerate points fol-

where
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lows in the usual way. The expression fofw .y /dk?okP  Proceeding, we take/ 7k of Eq. (13) and, dotting the result
leads to a kind of effective mass sum rule that initially in- into hy, and integrating over a unit cell, using Ed-2) and
volves matrix elements connecting the photonic band statthe expansion

hmi(r) to all functionsh,g(r), but it can be reduced to one

involving only matrix elements between photonic band
ahmk ' ahmk
states. — z hoil Do
We begin with Eq.(10), which we write in shorthand as okd @ ok?
— , hol (9H /dk®)h
(Hk )\Uk)ho'k ’ (11) - _ z hg-k< k k mk> ' (17)
g ()\Uk_)\mk)

using a single Greek subscript to denopsS| where conve-

nient. We take all th normaliz . - .
ent. We take all the states lito be normalized, where the prime indicates that is not to be equal to our

(NN = 8oor s state of interest, we find that
where in general PN _<h 9PH, A
akakP | ™| akagkb ™
(a|b>zf ~a*(r)-b(r)dr.
untt S (Nl (Hi /KD Y (M il (TH L KO i)

Now atk we choose a type; band that is nhondegenerate; o (N k™ i)
we denote the particular state by, . We now imagine al- h [(dHe 1 IKPYR A | (He | KBV R
lowing k to move to neighboring points+ « in the Brillouin - (Nimkl (71! K1) (N (7 TK) mk>,
zone, in the course of whidh,,, evolves; we forego normal- 7 (N ok = N k)
ization atse# 0 by insisting thath, 1 ) — N is orthogonal (18
to h,, . Hence

sh We can write this as the sum of two terms,

k
J Pk [ PN . azxmk)
h, k*ok® | ak?ak®) | ak?ak® o
| ——— ) =0, (12
ok3gkP

where the term labeled with the subscrb contains the
etc., where the superscript ¢ indicates a Cartesian com- first term in Eq.(18) and the terms in the summations involv-
ponent. Normalization could always be imposed at the end ohg photonic bandstype r; solutiong; the second term in-
the calculation if desired. Taking the derivative of Efjl)  volves terms in the summations in E38) involving typer,
yields and typer; solutions(with eigenvaluex ,,=0). Then using
A k= 02, /C?, we write

IHi  INmk M
( . : hmk+(Hk_7\mk)_n;:0- (13
gke ok Jk Pomy (fwm) +(¥wm) (9
b b b/
Dotting into hyy,. and integrating over a unit cell, and using koK oKk P KK/

Eqg. (11), we find

where
I\ ik IHy
- =<hmk —ahmk>. (14)
&k ak ( ﬁzwmk> - C2 ( (92)\mk) 1 ﬁwmk ﬁwmk
Sincel = w2, /c?, this immediately yields k?k® ob 20mi | k29K op  @mk oK Jk®
dome €2 IH, and
=—\ hp|—= N } » 15
Ikd Zwmk < mk k2 mk ( )
) . . . Pw c? N
an expression for the group velocity associated with band mk | _ mk
at pointk in the Brillouin zone. gkeak®| o 2omk\ gk2ok]

Next, dotting Eq.(13) into h%,, for o not equal to our

state of interest, and integrating over a unit cell, gives We include the group velocity terms in the photonic band

oh hl (M, /9k®)h (pb) component of the group velocity dispersion because the
By — ) = — (i (9Hic/ IK) i) _ (16)  group velocity(15) involves only the photonic band of inter-
7| k@ (N ok—Nmk) est. From the expressions above we find
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ﬁzwmk . C2 h
IKAKD |  2wm\ ™
pb
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I*Hy, he ) — ct Z‘/ (N (9H 1 k) N (Mo (TH L IKP) i)
aKAIKE [ 2w (03— 02y
c , (N (9 IKP) ) (k| (TH Ik i) € IHy IHy
2 2 - 3 hmk _ahmk hmk _bhmk ’ (20)
(wpk—wmk) 4(l)mk C?k (9k

B 20k g

where the sum ovep is over photonic bands other than our The first contribution to Eq(19), that of Eq.(20), is directly

band of interest, and

>

(720)mk C
ak2akP 0 Zwsmk oEry

IH,
Whmk

IH,
%hmk :

< hmk

C4

Zwmk OET]

IHy h h
k2 ok ok

(7Hkh h
&kb ok ok

The sum ovelwr in Eq. (21) ranges over only the type,
and typer; solutions for which\ ,,=0. Yet it is possible to
write this contribution ta9 e /Jk?kP in terms of the ma-
trix elements involving only the photonic banttgpe 7, so-
lutions), because the sum over typg and 75 solutions in
Eq. (21) appears only in the form

(21)

E |h0k><h0'k|'

o&ET)

(22

Using the resolution of unityZ in the usual obvious sche-
matic notation,

=Nl + 2" M) (ol + 2 (ol

TET] oET]

to solve for the suni22), we can then write Eq21) as

( ﬁzwmk ) C4 < h
=3 mk
IKAIK| 2w

OHy IH  IHy THy
— 5T mk

ke akb T akb akd
c? N aHkh N aHkh
wqu mk k2 mk mk 07|(b mk
ct , IH,
- hpk|——=h
Zw:r;nkg < ™ o pk>
IH,
X hpk Whmk
ct , IH,
- hok|——h
IHy
X hpk %hmk . (23

Equation(15) for the group velocity and Eq19) for the

associated with the photonic bands. The other contribution,
Eqg. (21), is associated with solutions of type, and 73,
which are unphysical except in the case of a uniform solution
H. But since typer, and 73 solutions of Eq(1) all have the
same eigenvalue of zero, in the end that contribution can be
written in terms of matrix elements involving photonic bands
as well[Eg. (23)].

IV. DISCUSSION

Applications of thek- p theory in electron physics begin,
depending on the problem at hand, with eigenstates of the
Schralinger, Pauli, or Dirac Hamiltonian. Since the corre-
sponding time-dependent equation is the fundamental equa-
tion of the theory being employed, the eigenstates of the
Hamiltonian are therefore all physical solutions. Hence, in
expanding the periodic part of a Bloch functionkat « in
terms of those at it naturally suffices to consider the physi-
cal solutions, since they exhaust the mathematical ones.

The situation is qualitatively different in the study of pho-
tonic band gap materials. There the eigenfunctions of interest
are those of the master equatidn, but the Hamiltonian-like
operator® of that equation isot directly associated with the
fundamental theory at hand. Rather, it is the Maxwell equa-
tions that define the fundamental theory. And there are many
solutions of the master equation, with eigenvalue0, that
do notcorrespond to the physical solutions, i.e., solutions of
the Maxwell equations. Hence the physical solutions of the
master equation—the photonic bands—do not exhaust the
mathematical solutions.

Now both a photonic band function &t H.,(r) , and a
neighboring one at + k, Hyyc1 (1), are physical solutions,
and are therefore transverse vector fields. But in general nei-
ther of the periodic parts,(r) andhy. o(r) are trans-
verse, and indeed they differ from transversality by different
amountgsee Eq(5)]. The resultis thal, + 4(r) cannot be
expanded in terms of periodic functiohg,(r) correspond-
ing only to physical solutions; the periodic parts of unphysi-
cal solutions ak must be employed as well.

To our knowledge this has not been pointed out in the
literature. Yet if the sums appearing in previous calculations
(see, e.g., Johnsoet al. [3]), essentially corresponding to
those appearing in Eq18), are taken to range oveill the
h,(r), both the physicahnd unphysical solutions, those re-
sults are correct. That is, if one works with thal set of
eigenfunctions of the master equation, including the unphysi-
cal solutions withV-H(r)+#0, one will not go astray. Of
course in practical applications, where it suffices to approxi-
mate the sums by contributions from only a few neighboring
bands, the neglect of the unphysical solutions at zero fre-
quency should lead to no significant error; both the unphysi-
cal solutions and the physical “remote bands” have a neg-

group velocity dispersion are the main results of this sectionligible effect ond?wy, /dk2ak®.
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Nonetheless, since in formal developments it can be cru- — = T 2
cially important to include all terms in a sum rulg], the g (1) = A1) A1)+ A (1) + O5), (A2)
appearance of these unphysical solutions in the expression
for P?wm/Ik29k® [the contribution 2w /dk?IkP), of  where
Eqg. (21)] is worthy of note. Further, we have shown that,

using closure, it is in fact possible to write the contribution 7 — . S (Nl (TH ] IK®) i)
of these unphysical solutions Wy /dk?3k® in terms of m(1) =« o5 k(T (Nok— M) ’
matrix elements involving only physical solutioftsg. (23)], (A3)

hence in the end producing a correct sum (ke a correct
expression ford?w, /dk?kP) involving only the photonic and
bands We stress that if the sums in previous expressions for
Pwm k2K in the literature[3] are taken to involvenly % S h (ol (H /9K Ny
the photonic bands, they are incorrect. mik(1) =~ sers k() Nok— NAmi)
Finally, we note that it is straightforward to work out the
expression forgH, /dk?® [ = 36, /k?; see Eqs(2) and (3)] ~eS h (hoil (0H, 1 9K®) hiymie) Al
and hence the matrix elements involve in the expressions K Gy ok(r) N mk - (Ad)
(15 and(19) for the group velocity and the group velocity
dispersion. Yet the complicated form of Eq20) and (23 Now using Eqg.(A2) we have
suggests that there may be a route, different from that based
on the master equatiofi), which might lead to a simpler V Nkt (1 =V - R (1) + V- R (1) + V- R (r)
expression for terms such a8, /9k3kP. We plan to ad- 5
dress this issue in a future publication. +0(x%),

while
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where we have used the fact tﬁm(T,L)k(r) are already first

order inx. Then, using Eq(Al), which holds for functions
In this Appendix we confirm that, if we use our full basis Of both typesr; and r,, we find that for Eq(5) to be satis-

set and perform &-p expansion to move frork to k+,  fied we require

then we do indeed recover E(). We use the fact that this

APPENDIX

equation is satisfied at tHe at which we begin the expan- ik N (N + V- A1) + ik A1) =0 (A5)
sion,
[cf. Eq.(6)].
V-hp(r) +ik-hp(r)=0, (A1) Now in the special case th&=0 there will be three

functionsh,,(r) in the sum in Eq(A4) for which G,,=0.

where hmk Corresponds to a typel solution of the master But these functions al’e' Uniform, S.O' theil" inergence is
equation(1). It will suffice to restrict ourselves to smak; ~ clearly zero. Thus, to satisfy EGAS) it is sufficient to re-

we use Eq(17) for dhp,/dk? to write quire
(1) , 16 Nipk(1) + V- Ay (1) + K- i (1) =0,
h oD =hg(r)+k————+O(k
m(k+ (1) = Nmie(1) P (k%) where
) N _ h, il (9H, 1 9k3)h
=Nk + 12, hvk<f><h«k f> (=1 S () oAl - LLLLARNS
oeTy mTk

+0(k?), =
(<) where the overbar omj indicates that all terms of type;

where repeated Cartesian components are to be summ@ [0 be included ik+0, while only theG, 0 terms are to
be included ifk=0. To proceed we need to work out the

over, or -
expressionfA6) for hy,(r). The overlap integral involved is
A (il (OH T K®) i) complicated to work out directly, but a simple expression for
P+ 1 (1) = Dk (1) — & 2 k() U it can be derived using the fact that
+O(k?). (ol Hihm) =0

Breaking the sum inter 1,7, (Meaningo is either a type  for o 3, since theh,,(r) are eigenfunctions of the Hermit-
74 Or a typer, solution and o e 73, we can write ian operatorH, with eigenvalue zero. Hence
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9 oh, H, where in the last line we have used the fact that, since
a<h"'k| k) = —‘; Hihm ) +1{ hok —ahmk Hme(r) is transverse, the componerts, must be perpen-
ok ok ok dicular tok+G,,. Hence Eq(A7) yields

+<h(,k

dh
Hk mk> =0. . nm

ke Aepiid(1)= = 2 A1) |k+ T
Now the last of the three terms here is itself zero, again since 1 h?
the h,(r) of interest are eigenfunctions @f, with eigen- - wk+G MK 6iGp:1 (A8)
value zero. Thus we find NN En: ( r])||<+Gn|
dHy dh,k dh,x and finally
<h(rk %hmk> < P Hihm ) = = Ak ey Pk )+ B o
. Vi u(r) ik (r)
and the expressiofA6) becomes n
1 X K hmk .
=——— > i(k+Gy)- v(k+Gy) elCn'r
N |k+ G,
R ==k 3 (0| 2% ). (A7)
ge T3 | '
- .hn eIGn~r
To evaluate this expression we nedtf, (r)/ k2. JO, ; e
Consider first the case wheket 0. We recall the expres- )
= —irchp(r), (A9)

sion (7) for a generalh, (r) and, sincev(k+G,)=(k

+G,)/|k+G,|, we find immediatel
o/ ol Y so we find that Eq(A5) is indeed satisfied.

du(k+Gy) a [é- (k+G,) Ju(k+Gy) In the case thak=0, the reduction proceeds in the same
way except that, instead of EGA8), we find

okd  [k+Gyl k+G,|2
n
Thus foro=(nL) we have mLO(r)__ 2 hnLO(r) |G |
ar?h’,:l_k(r)_ 1 K
ok O\ [k+Gyl so instead of Eq(A9) we find
ekt Gk +Go)| g - 1 ehio
e V-hpo(r)=—— iG,-v(G g'Gn'r
|k+Gn|2 mLO( ) ; n,(%# n y( n) |G |
Next, using the Fourier expansion of the periodic function i _
Nk (1) =——= > whjenr.
it Q. n& 70
1
mk(l)=—7=— ) ut anyHo(r) of type rymust be orthogonal tél yy o(r),
(r) \/Q—E el But anyHpo(r) of be orthogonal tél . o(r)
o] p

HyyLo(r), andH, o(r), since the latter three functions have
eigenvalue zero, so it must be thg,=0 for G,=0. Hence

we find .
we can write

dh
P nLk h
ak®

> rhl  [re(k+Gp)lu(k+Gp)-hT,
mk | —

= - — i )
|k+Gyl |k+Gql? V-hpo(r)=— NON 2 Kehioe!Cn = —isehyo(r),
~h! ¢’

_ mk

Ck+ Gy and again we satisfy EGA5).

[1] N. F. Johnson and P. M. Hui, J. Phys.: Condens. Mditer [4] J. D. Joannopoulos, R. D. Meade, and J. N. WiBhptonic

L355 (1993. Crystals: Molding the Flow of LightPrinceton University
[2] P. M. Hui, W. M. Lee, and N. F. Johnson, Solid State Com- Press, Princeton, NJ, 1995
mun. 91, 65 (1994. [5] For an example in electron physics, see the Introduction of J.

[3] N. F. Johnson, P. M. Hui, and K. H. Luk, Solid State Commun. E. Sipe and E. Ghahramani, Phys. Rev4® 11 705(1993.
90, 229(1994.



